I. INTRODUCTION

Systems far from equilibrium are of major interest, and there have been significant advances in our ability to describe them recently. In particular, systems with well-defined steady states are now known to be constrained by certain symmetry relations. For such systems, the steady-state distribution is analogous to the free energy in that any quantity of interest can be calculated from it. However, like the free energy, the steady-state distribution can be slow to converge in simulations owing to minima and barriers that hinder exploration of phase space. In such cases, it is useful to divide the space into regions that can be treated independently in parallel (umbrella sampling). Some of the features that make reversible systems interesting also present challenges for umbrella sampling. One must account explicitly for the fact that the flux across any boundary introduced is nonzero because detailed balance is not satisfied. For the same reason, the transition path ensemble that connects two stable states can be significantly different for “forward” and “backward” trajectories. In other words, the physically weighted ensemble of paths from A to B in general differs from that of paths from B to A.

Motivated by the string method for equilibrium systems, we previously introduced a version of our nonequilibrium umbrella sampling algorithm that focuses sampling on a tube of transition paths that connect two basins in a phase space of arbitrary dimension. The method differs from other interface-based methods such as milestoning, forward flux sampling (FFS), and (partial-path) transition interface sampling, in that the set of interfaces evolves over the course of the simulation from an initial guess toward its final configuration. This is important as the choice of reaction coordinate (or equivalently, the set of interfaces orthogonal to it) is often nonobvious and strongly affects the efficiency of a simulation. However, as discussed by Dickson et al., successful application of the stringlike version of nonequilibrium umbrella sampling requires significant overlap between the forward and backward transition pathways and calculate rates and steady-state distributions. We compare the efficiency of obtaining these results with that of FFS on the same system. Both algorithms are able to calculate the rate, but in the presence of a long-lived intermediate, the umbrella sampling algorithm converges faster. In Sec. III B we illustrate the ability of our method to describe a limit cycle in a multidimensional order parameter space and determine its period by applying it to a model of circadian oscillations.

1Electronic mail: dinner@uchicago.edu.
II. METHODS

The nonequilibrium umbrella sampling method is described in detail elsewhere.5,6 Essentially, the order parameter space is divided into regions and a separate simulation (a “walker”) is performed in each region. To perform these piecewise simulations accurately in a nonequilibrium system, two quantities are needed for each region: the weight (the probability of an unconstrained walker being in that region) and the entering flux distribution (the probability density of trajectories entering into the region). Both quantities are obtained by monitoring attempted region-to-region boundary crossings of the walkers. When a walker tries to leave its region, it is reinitialized according to the region’s flux distribution. One way to establish these distributions (the technique that is used here) is to approximate them using lists of saved entry points of length \(N_{\text{list}}\) and to continually refresh them by overwriting the oldest entries.6

We refer to the set of regions into which the order parameter space is divided as a “lattice.” We found that using two lattices that are shifted relative to each other enhances the stability of the algorithm. Simulations on each lattice are used to record points for the fluxes on the other lattice. The weights of the regions are updated according to methods given in Sec. II C and the steady-state distribution is obtained once the weights and fluxes converge self-consistently. There is no computational cost associated with having two lattices rather than one as the results are pooled at the end of the simulation.

A. Dual-direction scheme

In our original algorithm,5 the regions used to confine the walkers are static and evenly tile an order parameter space, such that the computational cost of the algorithm increases exponentially with the dimensionality of the space. In Voronoi-based nonequilibrium umbrella sampling,8 this dependence is removed by instead using Voronoi polyhedra as regions. Each Voronoi polyhedron is defined by a point in phase space (an “image”), such that every point in the polyhedron is closer to that image than to any other. The images together form a “string” that connects two areas of interest in phase space. By defining the regions as above, the computational cost of the simulation is decoupled from the dimensionality of the order parameter space. Initially, the images are placed in an arbitrary position (usually a linear interpolation between initial and final states) and over the course of the simulation the images evolve until the path stabilizes inside the reaction tube. The movement of the images based on the sampling5,6 is according to the finite-temperature string method.7–13 Namely, after a specified length of time (\(T_{\text{move}}\)), the average position of each walker is determined, and the positions of the images (\(z_i\)) of the first string are moved toward their walker averages:

\[
z_i^{\text{string}} = z_i^w + \tau(\langle x_i \rangle) - z_i^w,
\]

where \(z_i^w\) is the original position of image \(i\), \(\tau\) is a parameter between 0 and 1 controlling the rate of the image movement, \(\langle x_i \rangle\) returns the position in the order parameter space given \(x_i\) in the full space, and \(\langle x_i \rangle\) is the average position of walker \(i\) during the last time interval. The string is then smoothed according to

\[
z_i = z_i^{\text{string}} + \kappa(z_i^{t+1} + z_i^{t-1} - 2z_i^{t}),
\]

where \(\kappa\) is a positive parameter that controls the strength of the smoothing [note that, while Eq. (2) was employed by Dickson et al.,6 the first \(z_i^{t}\) on the right hand side was incorrectly omitted from Eq. (7) of that paper]. Finally, the string undergoes a reparametrization step such that the images are moved from \(z_i^{t}\) to positions spaced equally in arc length to ensure even sampling along the path. For our purposes, Eqs. (1) and (2) are used to move the images in the first lattice, and the second lattice images are placed at the midpoints of the images of the first. More information about this procedure can be found in Vanden-Eijnden and Venturoli13 and Dickson et al.6

In the present study, we perform the umbrella sampling algorithm as above, while explicitly defining separate strings for the forward and backward transition path ensembles. This is done by defining two basins, \(A\) and \(B\), that are independent of the Voronoi sampling regions, and separating trajectories that last visited \(A\) from those that last visited \(B\). Let \(R^m\) be the normal \(m\)-dimensional order parameter space, and let the trajectory \(\{x(t)\}\) have the additional property that \(x_{m+1}(t)=0\) if the trajectory last visited \(A\), and \(x_{m+1}(t)=1\) if the trajectory last visited \(B\). Trajectories can now be defined in an extended phase space \(R^{m+} = R^m \cup \{0, 1\}\). Figure 1 shows an example of a set of images spanning \(R^{m+}\). To employ the Voronoi-based procedure, we define the distance between two points \(x\) and \(y\) in \(R^{m+}\) as follows:

\[
\|x - y\| = \begin{cases} \infty & \text{if } x_{m+1} \neq y_{m+1}, \\ \sqrt{\sum_{i=1}^{m} (x_i - y_i)^2} & \text{otherwise}, \end{cases}
\]

such that points that originated from different basins are infinitely far apart. This way, all Voronoi regions are either wholly in \(R^m \cup \{0\}\) or \(R^m \cup \{1\}\). We denote the set of Voronoi regions in \(R^m \cup \{0, 1\}\) by \(S_A(S_B)\). Using the theory above, two forward and backward pathways in \(R^m\) can be viewed as a single pathway in \(R^{m+}\), and since boundary crossings occur in the same way as before, no other modifications to the algorithm are needed.

B. Obtaining rates

As previously noted in Warmflash et al.5 and Dickson et al.,6 one should be able to obtain kinetic quantities from nonequilibrium umbrella sampling simulations because they harvest segments of true trajectories piecewise and thus contain information about dynamics. Vanden-Eijnden and Venturoli29 recently enunciated a specific procedure based on nonequilibrium umbrella sampling to calculate the rate of a (equilibrium or nonequilibrium) process. Here we present an equivalent but more compact derivation of the key expression for clarity and completeness.

The rate of transition from a basin \(A\) to a basin \(B\) is, by definition, given by the flux of trajectories that originated in \(A\) and entered \(B\):18
expression for the rate constant for each lattice

\[k_{AB}^{(a)} = \frac{\Phi_{B|S_A}}{\bar{n}_A} \]

where \(\Phi_{B|S_A} \) is the flux into basin \(B \) of trajectories that originated in basin \(A \), and \(\bar{n}_A \) is a history-dependent indicator function that is equal to \(1 \) (0) if the system was most recently in basin \(A(B) \). Overbars denote time averages. Since the algorithm described above now computes fluxes separately for trajectories that originated in each basin, \(\Phi_{B|S_A} \) can be calculated directly.

\(\bar{F}_j \) is obtained from the umbrella sampling simulation by measuring the average flux contributions into basin \(B \) from all regions \(j \) in \(S_A \) (denoted \(\bar{\phi}_{Bj} \)). We then have an expression for the rate constant for each lattice \(a \):

\[k_{AB}^{(a)} = \frac{\sum_{j \in S_A^{(a)}} \bar{W}_j}{\sum_{j \in S_A} \bar{W}_j} \]

where \(n_{Bj} \) is the number of trajectories from region \(j \) entering basin \(B \) over a given sampling period, and \(\Delta T_j \) is the time elapsed in region \(j \) during that sampling period. \(\bar{W}_j \) is the time-averaged weight of region \(j \), and we used the fact that

\[\bar{n}_A = \sum_{j \in S_A^{(a)}} \bar{W}_j. \]

In practice, \(k_{AB}^{(1)} \) and \(k_{AB}^{(2)} \) are calculated separately and then averaged.

C. Global weight transfer scheme

In our previous work,\(^5,6\) the weights evolved over the course of the simulation by transferring incremental amounts from one region to another whenever walkers attempted to leave their regions:

\[-\Delta W_B = \Delta W_B' = s W_B T'/T_B, \]

where \(B \) labels the region to which the walker is confined, \(B' \) labels the region to which it attempted to go, \(\Delta \) denotes an additive change, and \(s \) is a user-defined parameter chosen to optimize convergence. The factor \(T'/T_B \) allows the simulations in different regions to be run asynchronously; \(T_B \) is the time elapsed in region \(B \), and \(T' \) is an arbitrary standard that in practice is chosen to be the time elapsed in a particular region of the system. We use a time-averaged weight (denoted \(\bar{W}_B \)) to compute the fluxes:\(^5,6\)

\[\bar{W}_B = \frac{1}{n} \sum_{j=1}^{n} W_B(t_{wt}/n + T_{int}), \]

where \(W_B(t) \) is the instantaneous weight of that region at time \(t \). \(T_{wt} \) is the weight update interval, \(n \) is an arbitrary discretization constant set here to 100, and \(T_{int} \) denotes the time at the beginning of that sampling interval.

Although this “local” weight balancing scheme is appealing in its simplicity, it is natural in the context of obtaining steady-states to consider a “global” weight balancing scheme in which the weights of all regions are updated simultaneously based on the fluxes. To this end, consider two regions \(j \) and \(k \). The flux from \(j \) into \(k \) can be measured in two ways: the number of trajectories in region \(j \) that exit into \(k \) can be counted and weighted by \(W_j \); additionally, the number of trajectories that are initialized in region \(k \) that originated in \(j \) can be counted and weighted by \(W_k \). Here we match these two fluxes to get an equality involving the two weights. Note that this is not the same as detailed balance; it only ensures continuity of the trajectory flux across the boundaries.

The physically weighted flux from \(j \) to \(k \), as measured in region \(k \), is given by

\[(\text{flux})_{jk}^k = W_{k}^{(a)} \bar{F}_{kj}^{(a)}, \]

where \(\bar{F}_{kj}^{(a)} \) is the average number of trajectories in region \(k \) being initialized at the \(j:k \) interface per unit time. \(\bar{F}_{kj}^{(a)} \) is calculated using the flux list for region \(k \):
that originated on any point on the boundary of region p.

Statistics for the knowns, we are free to choose the set of equations that in-
same lattice.

Dropped the lattice indices since all quantities are on the

between regions around the “principal loop”

tions caused by occasional transitions from high probability

backward strings, and connecting both strings at the end

contribute to the flux into region k.

Since there are many more available equations than un-
knowns, we are free to choose the set of equations that in-
volve the most transitions, and hence have the most accurate
statistics for the p and F quantities. We choose transitions
between regions around the “principal loop” (Fig. 2), those
passing sequentially through the images of the forward and
backward strings, and connecting both strings at the end
points. We make this restriction to limit large weight fluctua-
tions caused by occasional transitions from high probability
regions to low probability regions.

A matrix (M) is then constructed coupling N_{im} equations
of the form in Eq. (12) as follows:

$$M_{ji} = \begin{cases}
\sum_l p_{ijk} \tilde{F}_{ji} & \text{if } i = j, \\
-\tilde{F}_{kj} & \text{if } i = k, \\
0 & \text{otherwise},
\end{cases}$$

where k is the region following j in the principal loop, and

N_{im} is the total number of regions on the lattice. To insert
the normalization condition (and to relieve the overdetermi-
 Nation) a row (i) is chosen and its elements are replaced with 1
to form the matrix M_{norm}. The weights are then determined by

$$\tilde{W}^{(a)} = (M_{\text{norm}}^{(a)})^{-1} \hat{e}_i,$$

for each lattice a, where \hat{e}_i is the vector with its ith entry
equal to 1, and all others equal to 0.

For each weight update step this process is repeated once
for each region on the lattice using all possible values of i, and
then the weights are moved toward the average value
obtained:

$$\tilde{W}^{(a)}_{\text{final}} = (1 - \tau_w) \tilde{W}^{(a)}_{\text{initial}} + \frac{\tau_w}{N_{im}^{(a)}} \sum_{i=1}^{N_{im}^{(a)}} (M_{\text{norm}}^{(a)})^{-1} \hat{e}_i,$$

where $\tilde{W}^{(a)}_{\text{final}}$ is the weight vector before the update. Note
that $N_{im}^{(2)} = N_{im}^{(1)} - 2$ since the forward and backward strings
have one less image each. Since this process requires that
there be transitions from the last region of the forward (back-
ward) string to the first region of the backward (forward) string,
we keep the positions of the string end point images equal
by moving them to their joint averages, as opposed to
their individual averages as shown in Eq. (1). In other words,

$$z_{ij} = z_{i(N_{im}^{(2)})} = z_{ij} + \tau \left[\langle \theta(x_{ij}) \rangle + \langle \theta(x_{(N_{im}^{(2))}b}) \rangle - z_{ij} \right],$$

where z_{ij} denotes the first image in the forward string. This
is done in the same fashion for the $(z_{i(N_{im}^{(2)}),z_{1b})}$ pair of end
points. In practice, we found that the local weight transfer
scheme achieves higher accuracies, but that the global
scheme is more efficient early in a simulation; both proce-
dures are used in this work. As noted in Sec. IV, Vanden-
Eijnden and Venturiolo introduced an alternative global
weight transfer scheme.29

D. Forward flux sampling

Here we state the important operational features of FFS
in the notation used above, as well as some aspects specific
to our implementation. Further information can be found in
previous work.18-21 FFS computes the rate using Eq. (4), but
instead of calculating $\Phi_{\theta|S_{A}}$ directly, the space between the
basins A and B is divided by a series of nonintersecting in-
terfaces (λ_j), and the flux is computed using the product of
conditional probabilities:

$$\tilde{W}^{(a)} = (M_{\text{norm}}^{(a)})^{-1} \hat{e}_i,$$
\[\Phi_{0|S_A} = \Phi_{0|S_A} P(\lambda_B|\lambda_0) = \Phi_{0|S_A} \prod_{i=0}^{n-1} P(\lambda_{i+1}|\lambda_i), \]

where \(\Phi_{0|S_A} \) is the time-averaged flux reaching interface \(\lambda_0 \) measured in \(S_A \), and \(P(\lambda_{i+1}|\lambda_i) \) is the probability of reaching interface \(\lambda_{i+1} \) from interface \(\lambda_i \) before returning to the first interface, \(\lambda_0 \) (the boundary of basin \(A \)). Here, \(\lambda_n = \lambda_B \) is the boundary of basin \(B \).

It has been shown previously by Valeriani et al.;\(^{21} \) that steady-state distributions can be obtained by combining the results from separate forward and backward FFS simulations. The probability distribution (over an order parameter \(q \)) between the interfaces can be resolved by accumulating the density at \(q \) of trajectories leaving interface \(\lambda_i \) in the forward set of simulations (denoted by “+”):

\[\pi_+(q;\lambda_i) = \frac{N_q}{\Delta q M_i}, \]

Here, \(N_q \) is the number of times the order parameter has a value between \(q \) and \(\Delta q \) over all the trial runs, and \(M_i \) is the number of trial runs. The probability distribution conditional on starting at \(\lambda_0 \) is then

\[\tau_+(q;\lambda_0) = \pi_+(q;\lambda_0) + \sum_{i=1}^{n-1} \pi_+(q;\lambda_i) \prod_{j=0}^{i-1} P(\lambda_{j+1}|\lambda_j) \]

(19)

where \(p_A \) and \(p_B \) are the steady-state probabilities of basins \(A \) and \(B \), respectively. This method yields the steady-state distribution between \(\lambda_0 \) and \(\lambda_n \). The contributions from the basins can be computed in separate physically weighted simulations and incorporated using a least-squares fitting procedure.\(^{21} \) Note that Eq. (20) assumes that there are no intermediates in the system (i.e., \(p_A + p_B = 1 \)). To compare algorithms in the present study, we generalize Eq. (20) by replacing \(p_A \) and \(p_B \) with \(\tilde{p}_A \) and \(\tilde{p}_B \). The latter pair of quantities can be obtained in a FFS simulation using \(\tilde{h}_A \) and \(\tilde{h}_B \), respectively. The number of total steps needed to obtain the required number of accepted trajectories. The efficiency is obtained by examining the accuracy as a function of the total number of time steps. A procedure has been introduced to optimize the number of trial trajectories for each interface with respect to the computational cost of the algorithm;\(^{21} \) we expect that this does provide a boost in efficiency, but it is not implemented here.

III. EXAMPLES

A. Two-dimensional system with two pathways

We first examine a two-dimensional system with two pathways. The potential surface is defined by

\[V = \alpha (r - \gamma)^2 - \chi_1 \cos(2\theta) - \chi_2 \cos(4\theta), \]

where \(\gamma = (x^2 + y^2)^{\frac{1}{2}} \), and \(\theta \) is the angle in radians measured counterclockwise from the \(x \) axis. The potential surface has a ring-shaped valley of radius \(\gamma \) with basins at \(\theta = \pi/2, \pi, 3\pi/2, \) and \(2\pi \); \(\alpha \) controls the depth of the ring, and \(\chi_1 \) and \(\chi_2 \) control the depth of the basins. We drive the system out of equilibrium using a constant external force in the \(-\theta \) (clockwise) direction (\(\mathbf{F}_{ext} = -F \hat{\theta} \)). The force creates distinct forward (\(\pi \rightarrow 0 \)) and backward (\(0 \rightarrow \pi \)) pathways (Fig. 1).

The system evolves according to the equation of motion,

\[\mathbf{X}(t + \delta t) = \mathbf{X}(t) - \frac{\delta t}{m \xi} (\nabla \mathbf{V} - \mathbf{F}_{ext}) + \delta \mathbf{X}^G, \]

where \(\delta t \) is the numerical integration time step, \(\delta \mathbf{X}^G \) is a random noise term with components chosen randomly from a Gaussian distribution with zero mean and variance \(2D \delta t \), and \(\mathbf{X} = (x, y) \). \(D \) is the diffusion coefficient, which is related to the friction coefficient \(\xi \) and the inverse temperature \(\beta \) by \(D = (m \beta \xi)^{-1} \).

The system parameters used here are \(\alpha = 3.0, \gamma = 3.0, \chi_1 = 2.25, \chi_2 = 4.5, \xi = 1.5, F = 7.2 \), and \(\delta t = 0.005 \). The inverse temperatures used ranged from \(\beta = 1.0 \) to \(\beta = 3.0 \). Basins \(A \) and \(B \) are defined as circles of radius \(R = 1.0 \) centered at \((\gamma, 0)\) and \((\gamma, 0)\), respectively. There are a number of different parameters associated with the umbrella sampling algorithm: \(T \) is the total time of the simulation for each region, \(T_{move} \) is the string update period, \(N_{list} \) is the size of the flux list, \(N_{im} \) is the number of images used for all lattice \(l \) images (there are \(2N_{im} \) images). \(T_{wt} \) is the weight update period, \(s \) is the weight transfer parameter given in Eq. (7). \(\tau \) and \(\kappa \) are the string parameters given in Eqs. (1) and (2), and \(\tau_w \) is the weight update parameter defined in Eq. (15). The values of these parameters are given in Table I for the different simulation phases and temperatures.

For the FFS simulations, the interfaces \(\lambda_0 \) and \(\lambda_n \) were chosen as the basin boundaries for \(A \) and \(B \), respectively, to easily compare the results with those obtained from umbrella sampling. Interfaces 1 through \(n-1 \) were vertical lines spaced evenly from \(-\gamma + R + \delta \) to \(-\gamma - R - \delta \), where \(\delta = 0.01 \) to prevent the circular and linear interfaces from intersecting. In the FFS simulations, a fixed number \((N_p) \) of crossing points were obtained on each interface. Ten FFS simulations were run for each of nine different values of \(N_p = 100, 200, 500, 1000, 2000, 5000, 10 000, 20 000, 50 000 \). For each value of
The target rate for t_target is obtained by averaging the rate obtained from ten long, independent conventional simulations.

The projections of the steady-state distribution onto the θ coordinate are obtained using conventional (CONV), non-equilibrium umbrella sampling (UMB), and FFS simulations for the high-temperature value ($\beta=1.5$), and are shown in Fig. 3. Since the FFS distributions do not include the basin contributions, we compare them with the others by normalizing over the range of θ that is external to the basins. The projections all agree, and they clearly show the locations of the basins, intermediates, and transition states.

We examine the forward and backward rates, as calculated from Eq. (4). The error in a given simulation is taken to be

$$\text{error}(t) = | \log(k(t)) - \log(k^*) |,$$

where k^* is the target rate constant. This choice for the error identifies both overestimates and underestimates. For $\beta=1.5$, the target rate constant is obtained by averaging the rate obtained from ten long, independent conventional simulations. The target rate for $\beta=3.0$ was obtained by fitting the rate as a function of temperature to an Arrhenius form and extrapolating (Fig. 4). For each method, the errors plotted in Fig. 5 are the root mean squared averages of errors obtained from ten simulations. For the umbrella sampling algorithm, the results are a rolling average over the last five points in the curve. This both excludes early inaccurate results from the latter parts of the curve and lessens the effects of noise.

Figure 5 compares the efficiency of FFS, umbrella sampling, and conventional sampling for $\beta=1.5$ and $\beta=3.0$. For $\beta=1.5$, transitions from left to right are common, and conventional sampling is most efficient. The umbrella sampling algorithm is less efficient than conventional sampling for this inverse temperature because the time it takes for the weights and fluxes to converge is long compared to the mean first passage time. FFS does not outperform conventional sampling in this case due to the presence of the intermediates.
The bottom of Fig. 5 compares FFS and umbrella sampling for $\beta = 3.0$. FFS takes from 3 to 30 times longer than umbrella sampling to converge to a given accuracy. For this inverse temperature, it was unfeasible to determine the rate accurately with conventional simulations.

A summary of the performance of FFS and umbrella sampling for different values of β is given in Fig. 6. The quantity on the y axis is T_1/MFPT, where T_1 is the number of sampling steps required to reach an error of 1, which corresponds to an order-of-magnitude estimate of the rate constant. We divide T_1 by the mean first passage time (in numbers of steps) to compare with conventional simulations. The line $T_1/\text{MFPT}=1$ is plotted as it marks the point where obtaining an order-of-magnitude approximation of the rate requires about the same number of steps as it would take in a conventional simulation.

Figure 6 shows the main result of our work: for high temperatures (low β) transitions are frequent and both enhanced sampling methods are less efficient than conventional sampling. As the temperature decreases, the efficiency of the umbrella sampling algorithm improves dramatically, while that of sampling steps required to reach an error of 1, which

The line $T_1/\text{MFPT}=1$ is plotted as it marks the point where obtaining an order-of-magnitude approximation of the rate requires about the same number of steps as it would take in a conventional simulation.

Figure 6 shows the main result of our work: for high temperatures (low β) transitions are frequent and both enhanced sampling methods are less efficient than conventional sampling. As the temperature decreases, the efficiency of the umbrella sampling algorithm improves dramatically, while

FFS is hindered by the presence of the intermediate. Similar studies were done on a system without an intermediate and FFS was found to be more efficient than both umbrella and conventional sampling (not shown); this is the case even when the umbrella sampling interfaces are chosen to be the same as those for FFS owing to the simulation time required for the weights to converge.

B. Simulation of circadian oscillations

Circadian rhythms are sustained oscillations generated by most living organisms to adapt to the natural periodicity of their terrestrial environment. These oscillations are generated autonomously through negative autoregulatory feedback of gene expression, and occur with a period close to 24 h even in conditions of constant darkness. The mechanism of these oscillations can be broken down into linear chemical equations and simulated using the Gillespie algorithm.

Here, we apply the Voronoi-based nonequilibrium umbrella sampling procedure to a model for circadian oscillations developed by Gonze et al. to demonstrate the ability of the algorithm to find a periodic path in a space of order parameters and determine the associated oscillation frequency.

The model used here employs five main variables and is based on the negative feedback exerted by a protein (P) on the expression of its gene (G). The gene is expressed in the nucleus and then transcribed into messenger RNA (M_P). M_P is then transported to the cytosol where it is degraded and translated into the protein P_0. The protein undergoes catalyzed phosphorylation and dephosphorylation in multiple steps: $P_0 \rightarrow P_1 \rightarrow P_2$. P_2 is then either marked for degradation or reversibly transported into the nucleus ($P_2 \rightarrow P_0$). The nuclear form of the protein represses the transcription of the gene, completing the cycle. The kinetic expressions describing the above system contain nonlinear terms: the enzyme reaction rates are described by Michaelis–Menten expressions, and the successive binding of repressors to the gene promoter is described by Hill type expressions. These have been converted into a larger system of 30 elementary reactions involving 22 species that are summarized in Table II of
A 22-dimensional order-parameter space is constructed using the copy number of each species. We simulate this system using both conventional Gillespie simulations and the umbrella sampling algorithm. For the umbrella sampling algorithm, basins are defined using the number count of $M_P/M_P < 25$ is basin A, and $M_P > 120$ is basin B. These numbers are chosen such that an unrestricted trajectory would go through both basins in each oscillation. No comparison of the rate of convergence was made with conventional simulations or FFS since there are no significant bottlenecks in phase space along the circadian cycle. Rather, we examine both the projection of the reaction path onto three different phase planes (Fig. 7) as well as the

| TABLE II. Parameters used in the umbrella sampling algorithm for the circadian oscillations. T, T_{move}, and T_{wt} are given in numbers of simulation steps. |
| --- | --- | --- |
| T | Phase I | Phase II |
| T_{move} | 5×10^7 | 3×10^8 |
| T_{move} | 200 000 | ∞ |
| N_{list} | 100 | 1000 |
| N_{im} | 5 | 5 |
| T_{wt} | 10 000 | 1 000 000 |
| s | 5×10^{-3} | 1×10^{-3} |
| τ | 0.1 | \cdots |
| κ | 0 | \cdots |

FIG. 7. Projections of circadian oscillations onto system variables. The left figures show the progression of the string used by the Voronoi-based umbrella sampling method, where the progression goes from light to dark, and the forward paths are shown in red and the backward paths are shown in blue. These snapshots were taken at $T = 0, 1, 2$, and 5×10^6 simulation steps. The right figures show a typical straightforward Gillespie trajectory which was run for $T = 8 \times 10^6$, or about 14 revolutions. The top figures show the projection of the oscillation onto the P_0P_1 phase plane, and they agree with previous results (Ref. 27). The middle and bottom figures show the projection onto the P_0P_1 and P_1P_2 phase planes, respectively. Good agreement between the configuration of the string and the straightforward trajectories is obtained for all projections onto pairs of the 22 degrees of freedom in the system.
TABLE III. Mean first passage times (MFPTs) for the forward and backward halves of the limit cycle for the circadian oscillatory system obtained by conventional sampling (CONV) and umbrella sampling (UMB). Basin A is defined as all points with mRNA number counts less than 25, and basin B is defined as all points with mRNA number counts greater than 120. \(T_f\) is the MFPT from A to B, and \(T_b\) is the MFPT from B to A. The MFPTs are given in hours.

<table>
<thead>
<tr>
<th></th>
<th>(T_f)</th>
<th>(T_b)</th>
<th>(T_{tot})</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONV</td>
<td>13.4 ± 0.4</td>
<td>11.3 ± 0.2</td>
<td>24.7 ± 0.6</td>
</tr>
<tr>
<td>UMB</td>
<td>13.4 ± 0.8</td>
<td>12.5 ± 0.6</td>
<td>25.9 ± 1.4</td>
</tr>
</tbody>
</table>

The method explored here was developed concurrently with the “trajectory parallelization and tilting” scheme recently proposed by Vanden-Eijnden and Venturoli. This method builds on nonequilibrium umbrella sampling to obtain an equivalent calculation of transition rates (for equilibrium or nonequilibrium systems) using fluxes in phase space given a set of regions. The method works by first obtaining the full steady-state distribution (with contributions from both \(S_A\) and \(S_B\)) and using these results to obtain the conditional distributions in \(S_A\) and \(S_B\). The rate calculation discussed in Sec. II B differs in that it works for an arbitrary pair of basins that can be defined independent of the Voronoi regions, and it is performed simultaneously with the determination of the probability distribution rather than as a separate step. The extended phase-space formalism is also desirable in that it naturally incorporates the dual-direction scheme into the existing theory.

Vanden-Eijnden and Venturoli also propose a weight update scheme that is built on the condition that the net flux into any region is zero, as opposed to using the continuity of flux across a boundary as was done in Sec. II C. There is then only one equation per region, plus the normalization condition. They rely exclusively on this global weight balancing and use only a single lattice; they showed that their implementation led to accurate results for the Müeller potential with a transition rate of about \(5 \times 10^{-3}\) steps\(^{-1}\). Although these additional modifications of the nonequilibrium umbrella sampling algorithm are promising, a wider variety of systems must be studied to determine their utilities because we found that, in general, problems make themselves apparent as systems become more challenging to sample.

One can conceive of other (related) methods to estimate rates. It was previously mentioned in the discussion of Dickson et al. that rates can be calculated exactly by stitching together individual trajectories obtained piecewise in our method. This approach seems promising at first, since it allows for calculation of all moments of the first-passage time distribution, but it is currently not possible in practice. Points

accuracy of the mean period of oscillation. Figure 7 shows the evolution of the forward and backward strings from the initial guesses toward the reaction tube obtained by conventional simulations shown on the right. The end points of the initial forward and backward paths were obtained using four points from a short conventional simulation. Good agreement is shown between the converged string used by the umbrella sampling algorithm and the conventional trajectory in all projections, which demonstrates the ability of the umbrella sampling algorithm to describe an oscillatory path in a high-dimensional order-parameter space. The rate is obtained using only the local weight-balancing algorithm; the parameters used are given in Table II. A comparison of the mean first passage time for both parts of the loop and the total period obtained by conventional sampling and umbrella sampling is given in Table III.

IV. DISCUSSION

Here we demonstrated the application of the nonequilibrium umbrella sampling algorithm to an extended phase space that separates “forward” and “backward” trajectories with respect to two arbitrarily defined basins in phase space. In this extended phase space, rates can be easily computed as the flux into the corresponding product basin. The dual-string formalism introduced here also enables straightforward calculation of statistics for periodic systems, such as the circadian clock model. For systems that instead reach limit cycles in response to periodically varying external forces, the nonequilibrium umbrella sampling algorithm could be applied by associating with each copy of the system a “clock” variable that reports the time within the period of the perturbation. This variable would be saved with the phase space point during boundary crossings and used to reset the external environment when a walker is reintroduced to a region following an attempt to leave it. In other words, the reinitialized copy would proceed from the point in the period at which the phase space point used to restart the simulation was saved, so the “clock” runs continuously for each trajectory. This would avoid mismatches between phase space points and the external perturbation, which could lead the system away from the limit cycle. The output of the algorithm (a steady-state probability distribution in space time) would be equivalent to a time-ordered sequence of the probabilities of the spatial order parameters along the limit cycle.

We showed for a two-dimensional system that the convergence of the umbrella sampling algorithm was faster than FFS when intermediates were present, as is common in complex systems. In general, FFS is sensitive to local minima along the reaction path. For a trajectory to be terminated in the standard version of FFS, it must either reach the next interface in the sequence, or return to the first interface. For systems with long-lived intermediates such as the two-dimensional system examined above, this results in the integration of long trajectory segments during which the system is trapped in a local minimum. To alleviate this problem, a pruning procedure was introduced that terminates trajectories on their way back to the first interface (see Appendix C of Allen et al.). In this procedure, fewer trajectories that go backward (toward the first interface) are simulated, and the trajectories that are simulated are given a higher weight to compensate for those that were prematurely terminated. It remains an open question as to whether this pruning procedure provides significant boosts to computational efficiency because \(P(\lambda_{i+1} | \lambda_i)\) includes contributions from both trajectories that go straight to \(\lambda_{i+1}\) and ones that first go back to \(\lambda_{i-1}\), and thus many long trajectory segments that sample the intermediate could still be required to determine \(P(\lambda_{i+1} | \lambda_i)\) accurately.

The method explored here was developed concurrently with the “trajectory parallelization and tilting” scheme recently proposed by Vanden-Eijnden and Venturoli. That method builds on nonequilibrium umbrella sampling to obtain an equivalent calculation of transition rates (for equilibrium or nonequilibrium systems) using fluxes in phase space given a set of regions. The method works by first obtaining the full steady-state distribution (with contributions from both \(S_A\) and \(S_B\)) and using these results to obtain the conditional distributions in \(S_A\) and \(S_B\). The rate calculation discussed in Sec. II B differs in that it works for an arbitrary pair of basins that can be defined independent of the Voronoi regions, and it is performed simultaneously with the determination of the probability distribution rather than as a separate step. The extended phase-space formalism is also desirable in that it naturally incorporates the dual-direction scheme into the existing theory.
are deleted from the flux list as it is refreshed, and longer trajectories have a higher probability of being overwritten, so a transition path ensemble generated in this fashion is heavily biased toward short trajectories.

Alternatively, one can define each region as a state, and use state-to-state transitions to build a rate matrix, as in milestoneing.14–16 This assumes that the states are Markovian, i.e., that the probability of making a transition from state i to state j is the same for each time step \emph{everywhere in state i}. For this reason, this approximation becomes better and better as the states get smaller. A natural idea is to instead use the interfaces orthogonal to the string only approximate isocommittor surfaces.17 Furthermore, it has been suggested that the isocommittor surfaces can be obtained using the interfaces between Voronoi polyhedra formed by a discretization of the principal curve obtained by the string method.13,17 However, it should be noted that even if the string converges exactly to the principal curve, the interfaces orthogonal to the string only approximate isocommittor surfaces \emph{at the string}. The isocommittor surfaces are not, in general, planar, and the difference between the interfaces and isocommittors will depend on the width of the transition tube and the radius of curvature of the string.

The rate expression employed in Vanden-Eijnden and Venturoli29 and the present study derives directly from the fundamental definition of a reaction rate. The advance in the present study is a practical one, concerned with how best to obtain the needed statistics. This work builds on remarkable advances over the last decade or so in reaction rate approaches. Advances such as transition path sampling,35–37 transition interface sampling,23–25 and FFS18–22 go beyond transition state theory (TST)15–17 in that the rate is calculated using statistics of an ensemble of paths, and the transition state itself does not have to be identified. Although nonequilibrium umbrella sampling is also a form of path sampling, one can view the rate calculation here as a limiting case of TST with the “transition state” moved to the boundary of the product basin. In this case, there is no recrossing by definition, since paths in the S_B ensemble are initiated the instant that the system enters the B basin. With a basic computational framework to calculate stationary distributions and rates in equilibrium and nonequilibrium systems now established, it remains to delineate the rules that guide the convergence of such simulations. In addition to exploring larger applications, doing so requires further extending the theoretical foundations. Success in this regard could also better link the practical advances to the emerging principles of nonequilibrium statistical mechanics.3

\section*{ACKNOWLEDGMENTS}

We wish to thank Albert Pan for a critical reading of the manuscript. This work was supported by the National Science Foundation and Natural Sciences and Engineering Research Council.